题目描述

给你两个整数,被除数 dividend 和除数 divisor。将两数相除,要求 不使用 乘法、除法和取余运算。

整数除法应该向零截断,也就是截去(truncate)其小数部分。例如,8.345 将被截断为 8-2.7335 将被截断至 -2

返回被除数 dividend 除以除数 divisor 得到的

注意:假设我们的环境只能存储 32 位 有符号整数,其数值范围是 [−231, 231 − 1] 。本题中,如果商 严格大于 231 − 1 ,则返回 231 − 1 ;如果商 严格小于 -231 ,则返回 -231

示例 1:

1
2
3
输入: dividend = 10, divisor = 3
输出: 3
解释: 10/3 = 3.33333.. ,向零截断后得到 3

示例 2:

1
2
3
输入: dividend = 7, divisor = -3
输出: -2
解释: 7/-3 = -2.33333.. ,向零截断后得到 -2

提示:

  • -231 <= dividend, divisor <= 231 - 1
  • divisor != 0

题目思路

  • 二分法

Java

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
class Solution {
public int divide(int dividend, int divisor) {
// 考虑被除数为最小值的情况
if (dividend == Integer.MIN_VALUE) {
if (divisor == 1) {
return Integer.MIN_VALUE;
}
if (divisor == -1) {
return Integer.MAX_VALUE;
}
}
// 考虑除数为最小值的情况
if (divisor == Integer.MIN_VALUE) {
return dividend == Integer.MIN_VALUE ? 1 : 0;
}
// 考虑被除数为 0 的情况
if (dividend == 0) {
return 0;
}

// 一般情况,使用二分查找
// 将所有的正数取相反数,这样就只需要考虑一种情况
boolean rev = false;
if (dividend > 0) {
dividend = -dividend;
rev = !rev;
}
if (divisor > 0) {
divisor = -divisor;
rev = !rev;
}

int left = 1, right = Integer.MAX_VALUE, ans = 0;
while (left <= right) {
// 注意溢出,并且不能使用除法
int mid = left + ((right - left) >> 1);
boolean check = quickAdd(divisor, mid, dividend);
if (check) {
ans = mid;
// 注意溢出
if (mid == Integer.MAX_VALUE) {
break;
}
left = mid + 1;
} else {
right = mid - 1;
}
}

return rev ? -ans : ans;
}

// 快速乘
public boolean quickAdd(int y, int z, int x) {
// x 和 y 是负数,z 是正数
// 需要判断 z * y >= x 是否成立
int result = 0, add = y;
while (z != 0) {
if ((z & 1) != 0) {
// 需要保证 result + add >= x
if (result < x - add) {
return false;
}
result += add;
}
if (z != 1) {
// 需要保证 add + add >= x
if (add < x - add) {
return false;
}
add += add;
}
// 不能使用除法
z >>= 1;
}
return true;
}
}
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
class Solution {
// KMP 算法
// ss: 原串(string) pp: 匹配串(pattern)
public int strStr(String ss, String pp) {
if (pp.isEmpty()) return 0;

// 分别读取原串和匹配串的长度
int n = ss.length(), m = pp.length();
// 原串和匹配串前面都加空格,使其下标从 1 开始
ss = " " + ss;
pp = " " + pp;

char[] s = ss.toCharArray();
char[] p = pp.toCharArray();

// 构建 next 数组,数组长度为匹配串的长度(next 数组是和匹配串相关的)
int[] next = new int[m + 1];
// 构造过程 i = 2,j = 0 开始,i 小于等于匹配串长度 【构造 i 从 2 开始】
for (int i = 2, j = 0; i <= m; i++) {
// 匹配不成功的话,j = next(j)
while (j > 0 && p[i] != p[j + 1]) j = next[j];
// 匹配成功的话,先让 j++
if (p[i] == p[j + 1]) j++;
// 更新 next[i],结束本次循环,i++
next[i] = j;
}

// 匹配过程,i = 1,j = 0 开始,i 小于等于原串长度 【匹配 i 从 1 开始】
for (int i = 1, j = 0; i <= n; i++) {
// 匹配不成功 j = next(j)
while (j > 0 && s[i] != p[j + 1]) j = next[j];
// 匹配成功的话,先让 j++,结束本次循环后 i++
if (s[i] == p[j + 1]) j++;
// 整一段匹配成功,直接返回下标
if (j == m) return i - m;
}

return -1;
}
}