题目描述

按照国际象棋的规则,皇后可以攻击与之处在同一行或同一列或同一斜线上的棋子。

n 皇后问题 研究的是如何将 n 个皇后放置在 n×n 的棋盘上,并且使皇后彼此之间不能相互攻击。

给你一个整数 n ,返回所有不同的 n 皇后问题 的解决方案。

每一种解法包含一个不同的 n 皇后问题 的棋子放置方案,该方案中 'Q''.' 分别代表了皇后和空位。

示例 1:

img

1
2
3
输入:n = 4
输出:[[".Q..","...Q","Q...","..Q."],["..Q.","Q...","...Q",".Q.."]]
解释:如上图所示,4 皇后问题存在两个不同的解法。

示例 2:

1
2
输入:n = 1
输出:[["Q"]]

提示:

  • 1 <= n <= 9

题目思路

  • 递归

Java

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
class Solution {
public List<List<String>> solveNQueens(int n) {
int[] queens = new int[n];
Arrays.fill(queens, -1);
List<List<String>> solutions = new ArrayList<List<String>>();
solve(solutions, queens, n, 0, 0, 0, 0);
return solutions;
}

public void solve(List<List<String>> solutions, int[] queens, int n, int row, int columns, int diagonals1, int diagonals2) {
if (row == n) {
List<String> board = generateBoard(queens, n);
solutions.add(board);
} else {
int availablePositions = ((1 << n) - 1) & (~(columns | diagonals1 | diagonals2));
while (availablePositions != 0) {
int position = availablePositions & (-availablePositions);
availablePositions = availablePositions & (availablePositions - 1);
int column = Integer.bitCount(position - 1);
queens[row] = column;
solve(solutions, queens, n, row + 1, columns | position, (diagonals1 | position) << 1, (diagonals2 | position) >> 1);
queens[row] = -1;
}
}
}

public List<String> generateBoard(int[] queens, int n) {
List<String> board = new ArrayList<String>();
for (int i = 0; i < n; i++) {
char[] row = new char[n];
Arrays.fill(row, '.');
row[queens[i]] = 'Q';
board.add(new String(row));
}
return board;
}
}