题目描述
按照国际象棋的规则,皇后可以攻击与之处在同一行或同一列或同一斜线上的棋子。
n 皇后问题 研究的是如何将 n
个皇后放置在 n×n
的棋盘上,并且使皇后彼此之间不能相互攻击。
给你一个整数 n
,返回所有不同的 n 皇后问题 的解决方案。
每一种解法包含一个不同的 n 皇后问题 的棋子放置方案,该方案中 'Q'
和 '.'
分别代表了皇后和空位。
示例 1:
1 2 3
| 输入:n = 4 输出:[[".Q..","...Q","Q...","..Q."],["..Q.","Q...","...Q",".Q.."]] 解释:如上图所示,4 皇后问题存在两个不同的解法。
|
示例 2:
提示:
题目思路
Java
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37
| class Solution { public List<List<String>> solveNQueens(int n) { int[] queens = new int[n]; Arrays.fill(queens, -1); List<List<String>> solutions = new ArrayList<List<String>>(); solve(solutions, queens, n, 0, 0, 0, 0); return solutions; }
public void solve(List<List<String>> solutions, int[] queens, int n, int row, int columns, int diagonals1, int diagonals2) { if (row == n) { List<String> board = generateBoard(queens, n); solutions.add(board); } else { int availablePositions = ((1 << n) - 1) & (~(columns | diagonals1 | diagonals2)); while (availablePositions != 0) { int position = availablePositions & (-availablePositions); availablePositions = availablePositions & (availablePositions - 1); int column = Integer.bitCount(position - 1); queens[row] = column; solve(solutions, queens, n, row + 1, columns | position, (diagonals1 | position) << 1, (diagonals2 | position) >> 1); queens[row] = -1; } } }
public List<String> generateBoard(int[] queens, int n) { List<String> board = new ArrayList<String>(); for (int i = 0; i < n; i++) { char[] row = new char[n]; Arrays.fill(row, '.'); row[queens[i]] = 'Q'; board.add(new String(row)); } return board; } }
|